
line-intersect-2d
Release 1.2.1a1

Piotr Maślanka

Dec 16, 2020

CONTENTS:

1 Basics 1

2 Usage 3

3 Indices and tables 5

Index 7

i

ii

CHAPTER

ONE

BASICS

The basic classes are as follows:

class line_intersect_2d.basics.Point
A single point.

This is immutable, hashable and __eq__able. Take care when comparing floats.

This overloads +, -, * and /

Parameters

• x (float) – x coordinate

• y (float) – y coordinate

Variables

• x – x coordinate (float)

• y – y coordinate (float)

add()

Returns result of adding this point to another point

Parameters p (Point) – point p

Returns new Point

Return type Point

div()

Returns result of dividing this point by a factor

Parameters p (float) – point p

Returns new Point

Return type Point

mul()

Returns result of multiplying this point by a factor

Parameters p (float) – point p

Returns new Point

Return type Point

sub()

Returns result of the difference between this point and p

1

line-intersect-2d, Release 1.2.1a1

Parameters p (Point) – point p

Returns new Point

Return type Point

class line_intersect_2d.basics.Segment
A segment.

This is immutable (save for tag), __eq__able and hashable.

Parameters

• start (Vector) – start point

• stop (Vector) – stop point

Variables

• start – start point (Point)

• stop – stop point (Point)

• tag – tag (int), writable

• q_nodes – numbers of q-nodes that this segment belongs to (tp.List[int])

intersection_point()
Get the point of intersection between this segment and s

Parameters sa (Segment) – segment s

Returns point of intersection

Return type Point

Raises ValueError – there is no intesection

class line_intersect_2d.quadtrees.Path
A path made from connected segments.

This is immutable.

Constructor works as:

>>> p = Path([Segment(...), Segment(...)])

or

>>> p = Path((x1, y1), (x2, y2), ...)

Variables segments – list of segments (tp.List[Segment])

2 Chapter 1. Basics

CHAPTER

TWO

USAGE

First you need to create your Path objects. Assume that paths you pass are numbered from 0 to n.

After you make them, you just pass them to

line_intersect_2d.quadtrees.check_intersection()
Check whether any number of paths intersect.

Parameters

• paths (tp.List[Path]) – paths to check

• split_factor (float) – Factor that the tree should be constructed. Eg. for the default
value of 0.1 the grid will be divided into 10 rows and 10 columns. Default is 0.1

Returns a tuple of two segments from different paths that intersect, or None if no intersection

Return type tp.Optional[tp.Tuple[Segment, Segment]]

Note that a split_factor will divide the grid into (1/split_factor)**2, so in case of the default split_factor of 0.1 100
subrectangles will be made.

Which will return either a tuple of (Segment, Segment) two segments from different paths (which paths it will be
stored in their tag attribute, the number that was aforementioned) or None will be returned, if they don’t collide

You can use later line_intersect_2d.basics.Segment.intersection_point() to calculate the in-
tersection point.

Installation:

Just do

pip install snakehouse satella
pip install line-intersect-2d

3

line-intersect-2d, Release 1.2.1a1

4 Chapter 2. Usage

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

5

line-intersect-2d, Release 1.2.1a1

6 Chapter 3. Indices and tables

INDEX

A
add() (line_intersect_2d.basics.Point method), 1

C
check_intersection() (in module

line_intersect_2d.quadtrees), 3

D
div() (line_intersect_2d.basics.Point method), 1

I
intersection_point()

(line_intersect_2d.basics.Segment method), 2

M
mul() (line_intersect_2d.basics.Point method), 1

P
Path (class in line_intersect_2d.quadtrees), 2
Point (class in line_intersect_2d.basics), 1

S
Segment (class in line_intersect_2d.basics), 2
sub() (line_intersect_2d.basics.Point method), 1

7

	Basics
	Usage
	Indices and tables
	Index

